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Abstract.	 Forests	 play	 a	 critical	 role	 in	 climate	 regulation,	 biodiversity	
preservation,	and	ecosystem	sustainability,	making	their	protection	and	effective	
management	a	strategic	priority	under	the	European	Green	Deal.	In	this	context,	
we	 present	 Green-HIT,	 a	 holistic	 Internet	 of	 Things	 (IoT)	 system	 designed	 to	
transform	 forest	 management	 and	 monitoring	 through	 the	 integration	 of	
advanced	 Information	 and	 Communication	 Technologies	 (ICT).	 The	 Green-HIT	
system	addresses	key	challenges	 faced	by	 forest	authorities	and	environmental	
stakeholders	by	enabling	real-time	monitoring,	 intelligent	decision-making,	and	
automated	response	mechanisms.	It	incorporates	a	range	of	capabilities	including	
early	 detection	 and	 prevention	 of	 forest	 Fires,	 afforestation	 and	 reforestation	
planning,	illegal	activity	detection	(e.g.,	logging	and	hunting),	and	the	generation	
of	forest	mapping	and	inventory	reports,	using	both	Field	and	remote	sensing	data.	
By	leveraging	edge	computing,	AI-driven	analytics,	cutting-edge	Unmanned	Aerial	
Vehicle	 (UAV)	 technologies,	 and	 interoperable	 data	 infrastructure,	 Green-HIT	
supports	 proactive	 forest	management	 strategies	 aligned	with	 green	 transition	
goals.	This	paper	will	demonstrate	the	effectiveness	and	efFiciency	of	the	system	
through	a	series	of	controlled	pilot	deployments	 in	selected	 forest	areas	across	
Cyprus.	
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Abstract  

  
The Green-HIT project focuses on effective and efficient forest monitoring and management, which holds the promise for climate 

change mitigation, ecosystem conservation, and biodiversity loss reduction. This project is funded by the Cyprus Research & 

Innovation Foundation (CODEVELOP-GT/0322) and is currently being implemented in Cyprus. Cyprus is located in the Eastern 

Mediterranean, an area frequently affected by various incidents that impact the preservation of forests (for example, forest fires, illegal 

logging, hunting, trespassing, and other activities that are damaging to biodiversity), especially during the summer season. Specifically 

for forest fires, several factors contribute to the increased risk of fire, such as prolonged drought, hot summers, strong winds, steep 

forest slopes, and flammable vegetation. Early warning and direct management facilities are paramount to efficiently tackling such 

disastrous events. To this end, the Green-HIT project aims to develop a holistic IoT platform for supporting productivity, 

competitiveness, and growth of the economy and the promotion of digital and green technology via forest management and monitoring 

in a post-pandemic world by (a) offering support for prevention, detection and reaction to forest fires, (b) providing afforestation and/or 

reforestation recommendations, (c) protecting forests from illegal logging and hunting, (d) monitoring forests and forest areas, and (e) 

offering forest mapping and inventory facilities by collecting, combining and analyzing field and remotely sensed data. This study will 

present the deforestation and reforestation module of the Green-HIT platform, which aims to identify and suggest (to relevant 

authorities), possible areas for reforestation. This module was developed using remote sensing data. Specifically, a change detection 

technique using the Euclidean distance was used for the identification of deforested areas achieving an Overal Accuracy equal to 67.7 

%. Also, for the reforestation module, a multicriteria analysis was applied using several parameters like dNBR, land cover, fire history, 

soil erosion, etc., using the Google Earth Engine platform. For the purposes of this study,  the Argaka fire event was selected to evaluate 

the accuracy of the developed model.  

 

1. Introduction 

Forests have a vital role for the Earth, and it is important to 

determine their status both strategically and tactically. 

Mediterranean forests are critical for providing numerous 

ecosystem services that enhance human well-being. These forests 

play a pivotal role in improving food, water, and energy security 

and are instrumental in mitigating risks. Additionally, they 

contribute significantly to both local and global economic 

structures. Furthermore, Mediterranean forests are vital for the 

protection of cultural identities and facilitate personal 

development (FAO and Plan Bleu, 2018). Despite the numerous 

benefits these ecosystems provide, they face a range of 

disturbances. Notable examples include climate change and 

human population growth, which lead to consequences such as 

the conversion of forests into scrublands, wildfires, outbreaks of 

pests and diseases, overgrazing, and land abandonment. These 

factors pose serious threats to the health and sustainability of 

Mediterranean forests(UNEP/MAP and Plan Bleu, 2020). 

 

In recent decades, forest monitoring approaches in a wide range 

such as, timber production, environmental protection, 

biodiversity conservation, forest fire prevention, post-

disturbance monitoring, wilderness, and open spaces etc. have 

been improving continuously and remote sensing is increasingly 

used for the forest monitoring. On the field, measurement 

methods are important sources of information. However, in cases 

of collecting critical forest measurements on a larger scale, the 

use of these methods is limited. Because of this, forest monitoring 

has progressed to the use of remote sensing (space and airborne) 

because it can provide fast, accurate, and high-resolution 

information about the study areas. These technologies have 

favored forest monitoring in terms of capacity, scale, and detail . 

Some of the most common types of Earth Observation (EO) data 

include multispectral and synthetic aperture radar (SAR) 

systems. Apart from that, are considered also the light detection 

and ranging (LiDAR) technologies, which provide the tools to 

assess forest characteristics and can be used to monitor and 

quantify changes in forests over time . Forest disturbances like 

wildfires, insect outbreaks (e.g Thaumetopoea pityocampa), etc. 

are key factors that affect the dynamics of forest ecosystems. For 

example, they affect forest species composition, structure, above- 

and below-ground carbon storage , forest regeneration and 

successional dynamics, as well as cycle of water and energy . 

Because of this, it is important to have a continuous inventory of 

forest ecosystems.  

 

 Over the past few decades, the science of remote sensing has 

expanded in different forest applications, such as forest species 

classification (Papachristoforou et al., 2023; Prodromou, 

Theocharidis, et al., 2024) fire damage assessment (Prodromou, 

Gitas, Themistocleous, Danezis, et al., 2023; Prodromou, Gitas, 

Themistocleous, Nisantzi, et al., 2023), time series of forest 

seasonality (Theocharidis et al., 2023), fire risk (Prodromou, 

Girtsou, et al., 2024), as well as the impact of dust pollution in 

NATURA2000 regions (Themistocleous & Prodromou, 2023)  

 

The Green-HIT project focuses on effective and efficient forest 

monitoring and management, which holds the promise for 

climate change mitigation, ecosystem conservation, and 

biodiversity loss reduction. This project is funded by the Cyprus 

Research & Innovation Foundation (CODEVELOP-GT/0322) 

and is currently being implemented in Cyprus. Also the project 

aims at developing a holistic IoT platform, as shown in Figure 1 
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for supporting productivity, competitiveness and growth of the 

economy and the promotion of digital and green technology via 

forest management and monitoring in a post-pandemic world by: 

(a) offering support for prevention, detection and reaction to 

forest fires, (b) providing deforested areas and reforestation 

recommendations actions, (c) protecting forests from illegal 

logging and hunting, (d) monitoring forests and forest areas, and 

(e) offering forest mapping and inventory facilities by collecting, 

combining and analyzing field and remotely sensed data. This 

study will present the deforestation and reforestation modules of 

the Green-HIT platform, which aims to identify deforested areas 

and suggest (to relevant authorities), possible areas for 

reforestation. These modules were developed using remote 

sensing data. The platform operates across three main layers: the 

Perception Layer, which collects environmental data from IoT 

sensors, UAVs, and satellite imagery, the Network layer, which 

connects IoT gateways to transmit data to cloud servers, and the 

Application layer, where data is processed and analyzed using 

API-driven intelligence modules.  

 

 
Figure 1 The architecture of the Green-HIT platform for forest 

management and monitoring. 

 

1.1 Deforestation 

Deforestation is the conversion of forests to other land use, 

primarily caused by human activities or other causes like natural 

events (FAO, 2022). Large-scale forest cleaning or removal often 

leads to forest land being converted into non-forest uses for 

human purposes, such as urban development, agriculture, 

mining, timber extraction, and infrastructure expansion. 

Agriculture is the leading cause of deforestation, according to the 

World Wildlife Fund (Timmins et al., 2023; WWF, n.d.). Only 

for 2022, more than 65,000 Km2 of forest were lost, an area 

comparable with Sri Lanka or approximately 7 times the size of 

Cyprus. Deforestation results in the loss of forests and trees and 

the displacement of wildlife, particularly in tropical rainforests 

such as the Amazon, which hosts a significant portion of the 

world's biodiversity. In the Amazon, the world’s largest forest, 

around 17% has been lost over the past 50 years, mainly due to 

cattle ranching, with lost land increasing annually. A similar 

trend is observed in the Mediterranean region. Between 2001 and 

2019, an estimated 5.80 million Km2 of forests were lost, with an 

average annual loss of 306,000 Km2. The countries with the 

highest levels of deforestation include Spain, with approximately 

12,000 Km2 lost, France, with around 11,500 Km2, and Portugal, 

with roughly 10,000 Km2. (Ciobotaru et al., 2021).   

 

The European Union has established initiatives and laws to 

contribute to preserving and protecting forests while trying to 

minimize deforestation in Europe as much as possible. One of the 

principal regulations requires all goods entering and exiting the 

EU to be ‘’deforestation-free’’. All new regulations and laws set 

by the European Union have one primary goal: to reduce 

greenhouse gas emissions by at least 55% by 2030 compared to 

1990 levels, with deforestation playing a significant role in 

achieving this target (European Council of the European Union, 

2024).  

 

To effectively support these goals, advanced technologies such 

as remote sensing and Geographic Information Systems (GIS) 

have become essential tools for monitoring deforestation, 

assessing environmental impacts, and guiding conservation 

strategies. Geographic Information Systems combined with 

remote sensing technology can help scientists understand how 

forests around the globe have changed over the years, identify 

land use changes, and provide valuable data that can be used to 

either prevent future deforestation or help regenerate the 

forests.(Mitchell et al., 2017). Moreover, LiDAR technology 

offers detailed three-dimensional data on forest structures, 

enhancing the precision of deforestation monitoring. LiDAR 

generates accurate elevation models and canopy height maps 

using laser pulses to measure their return time. This data enables 

precise biomass measurements, canopy density, and 

topographical features. LiDAR-based analysis helps identify 

deforested areas, measure canopy loss, and assess forest 

fragmentation, which can help governments take the appropriate 

measures to minimize deforestation.(Almeida et al., 2024).   

 

As mentioned above, remote sensing is a high-priority technique 

that can be used to monitor, capture, and prevent deforestation. 

Through satellite images or aerial imagery, a change detection 

procedure can play a vital role in the defense of our forests. The 

Sentinel-2 imagery and multispectral images can provide 

valuable information, such as the NDVI index, and practical 

insights for scientists about deforestation. In general, change 

detection compares at least two images taken at different times, 

making it possible to track deforestation progress, vegetation 

health, and how time affects the forest in general. This approach 

allows for rapid and precise intervention, promoting forest 

sustainability.(Hewarathna et al., 2024). 

 

1.2 Reforestation  

Reforestation refers to the process of natural regeneration or tree 

planting that occurs after a natural disaster, such as a wildfire. 

This silvicultural practice fosters the development of forest 

structure and the many benefits that forests provide to human life. 

Reforestation encompasses all necessary actions to promote the 

natural regeneration of affected areas using ecologically 

appropriate tree seedlings (Brancalion & Chazdon, 2017; Uprety 

et al., 2012).  

 

Additionally, the European Commission places a high value on 

reforestation in its agenda and has recently published new 

"Guidelines on Biodiversity-Friendly Afforestation, 

Reforestation, and Tree Planting"(European Commission, 2023). 

These guidelines aim to provide strategies for creating new 

forests and planting trees in both urban and rural environments. 

The European Union has set a goal of planting 3 billion new trees 

by 2030, which can only be achieved through the combined 

support of authorities, forest organizations, and landowners 

(European Union, 2022).  In a world facing an increasing number 

of crises, reforestation stands out as a vital solution with 



 

numerous benefits. By restoring trees to deforested or barren 

land, we can reap a multitude of advantages (Bonn Challenge, 

2018; UNEP & FAO, 2020; UNEP/MAP and Plan Bleu, 2020).  

 

Firstly, trees are exceptional at absorbing carbon dioxide, 

providing a powerful defence against the high levels of carbon 

emissions our planet faces. This leads to a reduction in 

greenhouse gases. Secondly, forests, and thus the trees, serve as 

habitats for millions of animal species. Preserving and enhancing 

the biodiversity that Earth has to offer is our responsibility, and 

reforestation can significantly contribute to this effort (Lorenz & 

Lal, 2010; Raihan, 2023). Thirdly, healthy soil is essential for 

sustainable agriculture and thriving ecosystems, and reforestation 

plays a key role in maintaining soil health. Trees prevent erosion, 

improve soil structure through their extensive root systems, and 

reduce the risk of landslides and land degradation(Gobinath et al., 

2022). Finally, forests act as natural filters for the water that 

flows through them. Planting trees alongside waterways can 

significantly enhance water quality(Smith et al., 2013). 

 

Remote sensing can significantly advance reforestation efforts by 

providing valuable data and insights that enhance the planning, 

monitoring, and management of forest restoration projects 

(Tatem et al., 2008). Reforestation is not a simple task; for it to 

be effective, proper forest management is essential, and remote 

sensing can play a crucial role in this process(Gitas et al., 2012; 

Koch et al., 2021) .  

 

Remote sensing simplifies reforestation management, and high-

resolution satellite images offer invaluable data to scientists, 

helping to ensure successful reforestation initiatives. As time 

goes on, the costs associated with these efforts are increasing. By 

incorporating satellite and remote sensing data into our 

inventory, we can reduce costs for potential reforestation areas, 

especially in challenging locations (Cavalcante et al., 2022).  

 

Additionally, multispectral and hyperspectral imaging facilitate 

the monitoring and detection of vegetation health, moisture 

levels, and overall ecosystem recovery alves(Alves de Almeida 

et al., 2021). Analytical models and advanced intelligence are 

necessary to achieve successful reforestation plans with long-

term sustainability in mind.  Finally, the effort to combat 

deforestation and promote reforestation is a worldwide initiative 

that requires collaboration between governments, organizations, 

and local communities (UNEP & FAO, 2020; UNEP/MAP and 

Plan Bleu, 2020). 

 

2. Study Area 

The proposed methodology was implemented in Cyprus island.  

which is located in the Eastern Mediterranean, an area frequently 

affected by various incidents that impact the preservation of 

forests (for example, forest fires, illegal logging, hunting, 

trespassing, and other activities damaging to biodiversity), 

especially during the summer season. Specifically for forest fires, 

several factors contribute to the increased risk of fire, such as 

prolonged drought, hot summers, strong winds, steep forest 

slopes, and flammable vegetation. The deforestation model was 

implemented over the whole region of Cyprus, and the 

reforestation model was only for the Argaka fire event (Figure 2).  

 

The fire in Argaka area (Paphos region), erupted on June 18, 

2016, with an estimated burned area of 763.3ha. The predominant 

vegetation in these regions consists of Pinus Brutia forests with 

an understory comprising herbaceous plants and shrubs. The 

climate in these areas is typical of the Mediterranean, 

characterized by hot, dry summers and mild, rainy winters.  

 

 
Figure 2 Argaka fire event that was examined for this study 

 

 

3. Materials and Methods 

The proposed methodology is divided into two sections: the first 

part describes the approach used for developing the deforestation 

module of the Green-HIT platform, while the second part focuses 

on the reforestation module. For both modules, the Google Earth 

Engine (GEE) platform was utilized for the process development.  

 

The GEE is a planetary-scale platform for scientific analysis and 

visualization of geospatial datasets. In this platform, the open-

source images acquired by several satellites are accessible and 

can be efficiently imported and processed in the cloud without 

the necessity of downloading (Gorelick et al., 2017; Mutanga & 

Kumar, 2019) 

 

 

3.1 Deforestation module 

A change detection technique was implemented to identify 

deforestation areas. Specifically, the model is based on the 

difference in reflectance values between two images, one is the 

reference, and the other is the target. The user specifies a date in 

the model, and the algorithm detects changes between the 

selected dates based on the previous year.  

 

The change detection uses the spectral bands of Sentinel-2 

imagery and additional spectral indices to enhance the detection 

of the changes. ESA launched the Sentinel-2 mission, an optical 

platform equipped with a multispectral instrument that includes 

two satellites (Sentinel-2A and Sentinel-2B). Furthermore, this 

mission enables the acquisition of data in 13 spectral bands 

presented in Table 1 indifferent spatial resolutions (10m, 20m 

and 60m) every five days on average (Drusch et al., 2012; Spoto 

et al., 2012). The Sentinel-2A satellite was launched on 23 June 

2015, and 2B on 7 March 2017. As a result, the developed 

modules operate only on data collected after 2015.  Is highlighted 

that only the bands with spatial resolution at 10 and 20m were 

used. 

 

In the analysis used in the study, the spectral indices that are 

presented in Table 2 were incorporated as new layers to create 

image composites for the abovementioned datasets. The spectral 

indices were used since each can provide additional information 

for the analysis. One example is the use of NDVI, one of the most 

widely used vegetation indicators that highlight the vegetation 



 

condition (Tucker, 1979) and the SAVI, which considers the 

terrain and, in cases with low vegetation cover, corrects the 

effects of soil brightness. For the leaves' water content, the NDMI 

index was used, which is based on the ratio of NIR and SWIR 

(HUNTJR & ROCK, 1989). The NDRE index based on the 

NDVI formula was used; however, the Red Edge instead of Red 

(Barnes et al., 2000). 

 

 

Table 1 Spatial resolution and central wavelength for Sentinel-2 

bands. 

 

 

Also, to ensure consistency across datasets, each image 

composite was normalized using the minimum and maximum 

pixel values within the selected area. Additionally, to avoid any 

impacts from the cloud cover in the analysis, the images were 

filtered to have <10% cloud cover across the entire scene, 

especially above the area, using the 

CLOUDY_PIXEL_PERCENTAGE metadata to reduce the 

impact of clouds. Also, the cloud masking was performed using 

the QA60 band, where the pixels affected by clouds and cirrus 

were masked out.  

 

Change detection was performed following the band selection 

and the computation of the spectral indices for the two satellite 

image composites (reference/target). In detail, a pixel-based 

differencing approach was applied to detect changes in surface 

reflectance. Specifically, the difference between the reference 

and target imagery was calculated using the Euclidean Distance 

(ED) method based on the Eq.1. The normalized image 

composites were subtracted, squared, and summed across bands, 

followed by the square root to compute the final change 

magnitude. Higher ED values indicate more significant spectral 

differences suggesting greater changes in vegetation.  

 

𝐸𝐷 =  √∑ 𝑋2
𝑖 − 𝑋1

𝑖𝑛
𝑖=1   (Eq. 1) 

Where X represents the spectral bands (including spectral 

indices) 

 

Moreover, in order to automatically binarize the difference, the 

Otsu’s thresholding method (Otsu, 1979) is used, and then the 

changes are represented by pixels assigned a value of 1, and those 

with values of 0 are masked out to distinguish between changed 

and unchanged areas. This technique computes an adaptive 

threshold based on the histogram of changed magnitudes and 

ensures an optimal separation between changed and unchanged 

regions.  

 

After the identification of the changes, they were categorized 

using ancillary data. Specifically, land cover data provided by the 

Copernicus Land Monitoring Service was used to classify the 

detected changes into specific categories: changes in forest areas 

that indicate potential areas for deforestation, changes in rural 

areas, changes in urban environments, and changes in water 

bodies. In addition, fire-induced changes were determined using 

the burnt area datasets derived from MODIS Burned Area 

Product (MCD64A1).  

 

Finally, for the validation of the results, the fire events data from 

EFFIS service. Specifically, the evaluation was made based on 

the identification of known fire events in comparison with the 

change detection model that develop for the identification of the 

deforestation.  

 

 

Table 2. Vegetation Indices Equations based on Sentinel-2 data. 

Satel-

lite 

Vegetation Indices Abbrevia-

tion 

Equation Reference 

S2 

Normalised Difference Vegetation In-

dex 
NDVI 

𝑵𝑰𝑹 − 𝑹𝑬𝑫

𝑵𝑰𝑹 + 𝑹𝑬𝑫
 (Tucker, 

1979) 

Normalised Difference Red Edge Index 

 
NDRE 

𝑵𝑰𝑹 − 𝑹𝑬𝑫 𝑬𝑫𝑮𝑬

𝑵𝑰𝑹 + 𝑹𝑬𝑫 𝑬𝑫𝑮𝑬
 

(Gitelson et 

al., 2003) 

Enhanced Vegetation Index 

 

 

EVI 
𝟐. 𝟓(𝑵𝑰𝑹 − 𝑹𝑬𝑫)

 𝑵𝑰𝑹 +  𝟔 𝑹𝑬𝑫 −  𝟕. 𝟓𝑩𝑳𝑼𝑬 +  𝟏
 

(A. Huete 

et al., 2002) 

Soil-Adjusted Vegetation Index 

 

 

SAVI 
𝟏. 𝟓(𝑵𝑰𝑹 − 𝑹𝑬𝑫)

 𝑵𝑰𝑹 +  𝑹𝑬𝑫 + 𝟎. 𝟓
 

(A. R. 

Huete, 

1988) 

Sentinel-2 MSI 

Band Wavelength

(mm) 

Resolution 

(m) 

1 Coastal aerosol 433-453 60 

2 Blue (B) 458-523 10 

3 Green (G) 543-578 10 

4 Red (R) 650-680 10 

5 Red edge 1 (RE1) 698-713 20 

6 Red edge 2 (RE2) 733-748 20 

7 Red edge 3 (RE3) 773-793 20 

8 Near Infrared (NIR) 785-900 10 

8a 8 Near Infrared 

narrow (NIRn) 

855-875 20 

9 Water vapour 935-955 60 

10 Shortwave infrared / 

cirrus 

1360-1390 60 

11 Shortwave infrared 1 

(SWIR1) 

1565-1655 20 

12 Shortwave infrared 2 

(SWIR2) 

2100-2280 20 



 

Normalised Difference Moisture Index 

 

 

NDMI 
𝑺𝑾𝑰𝑹 − 𝑵𝑰𝑹

𝑺𝑾𝑰𝑹 + 𝑵𝑰𝑹
 

(HUNTJR 

& ROCK, 

1989) 

 

3.2 Reforestation module 

The Reforestation module was developed based on a multi-

criteria decision-making approach using remote sensing data to 

prioritize post-fire reforestation efforts within deforested areas. 

For the identification of the parameters, discussions were 

conducted with the forest department in Cyprus and based on the 

literature. Based on this approach, the selected factors for the 

development of the model were the fire severity, tree canopy 

density, elevation, slope, aspect, temperature, precipitation, and 

the fire frequency. With these factors the Analytical Hierarchy 

Process (AHP) proposed by (Saaty et al., 1980) is implemented 

in order to determine the importance of each factor, resulting in 

a priority reforestation map with three classes: low, medium, and 

high. Low and medium priority correspond to areas that have the 

potential for natural recovery, while high-priority areas require 

artificial restoration actions. AHP compares all factors against 

each other based on their importance on a scale of 1 to 9, as 

shown in Table 3. 

 

Table 3 Saaty Rating Scale 

Intensity of importance Remark 

1 Equal importance 

3 Moderately more important 

5 Strongly more important 

7 Very strongly more important 

9 Extremely more important 

2,4,6,8 Intermediate values 

 

 

After that, we retrieved the necessary data that corresponded to 

each factor. The Sentinel-2 imagery was used for the estimation 

of fire severity, while Corine Land Cover data was used to 

classify the land cover types, identifying the forested areas that 

have higher restoration needs. Additionally, topographic factors 

are incorporated using the SRTM DEM, and climate parameters, 

including LST from MODIS and precipitation from CHIRPS, are 

integrated to assess the potential recovery. Tree density data and 

fire history are also considered in the analysis. 

 

All factors were standardized in order to be in the same scale of 

value, where the original values were transformed into 

comparable units [59] from 1 up to 3, where the values of each 

factor that have low importance were taken the value 1, and the 

values with higher importance take values up to 3.    

 

Finally, the aggregation was performed using the weighted linear 

summation method. Specifically, the raster layer for each factor 

is multiplied by their respective criterion weight, and after that, 

they are summed. based on this, the final map about the 

prioritization of the areas for reforestation actions was developed 

and reclassified into reforestation priority classes. 

  

4. Results and Discussion  

4.1 Deforestation module 

The proposed methodology was conducted for the development 

of a deforestation module for the Green-HIT platform. 

Specifically, it was applied to specific regions to analyze land 

cover changes for a selected timeframe. The detected changes 

were categorized into four major classes - Forest, Water Bodies, 

Agriculture, and Urban based on Corine Land Cover (CLC) 

provided by Copernicus. The changes emphasize monitoring 

changes within forested areas. To ensure a more accurate 

evaluation, this study emphasized only the changes that were 

detected within forests, shrublands, and grasslands as defined by 

the CLC dataset. The urban areas, croplands, water bodies, etc, 

were excluded from the analysis.  

 

Figure 3 have presented some characteristic changes that are 

identified by the proposed methodology.  

 

 
Figure 3 Comparison between the changes detected by the 

change detection model with EFFIS burned areas. 

The deforestation detection module effectively identified 

deforested areas with high accuracy, 67.7%, as validated against 

burned areas from European Forest Fire Information System 

(EFFIS) data. The high agreement between the predicted 

deforestation areas and burned areas data highlights the 

robustness of the methodology in accurately capturing forest 

disturbances. This agreement suggests that the proposed 

approach is particularly effective in distinguishing fire-induced 

deforestation from other types of land cover changes. Moreover, 

the results indicate a distinct increase in deforestation areas 

during the summer months due to the increase in the number of 

fires. 

  

4.2 Reforestation module 

Multicriteria decision-making (MCDM) techniques are widely 

utilized and are highly effective for managing large volumes of 

complex information. These techniques can be categorized into 

various approaches depending on their specific applications.  

 

In the field of reforestation, several studies have employed the 

Analytic Hierarchical Process (AHP), as it can be effectively 

integrated with Geographic Information Systems (GIS) to 

determine the relative importance of different criteria. For 

example, AHP has been used to assess ecological suitability in 

land evaluation and natural resource management (Malczewski, 

2004; Ownegh et al., 2006). It has also been applied to identify 

optimal locations for the afforestation of endangered species 

(Alemi et al., 2014) and to evaluate afforestation efforts in Darab 



 

Kola, Miandorud County, Mazandaran Province, Iran 

(Gholizadeh et al., 2020). 

 

The prioritization of reforestation actions for the Argaka fire 

event was determined using the AHP method, categorizing the 

burned area into three main priority levels: low, medium, and 

high, as shown in Figure 4. These priorities were then translated 

into either artificial or natural restoration actions. Specifically, 

low and medium-priority areas correspond to regions with 

potential for natural recovery, while high-priority areas require 

artificial restoration actions. Moreover, Figure 3 highlights in the 

boxes some characteristic regions that are in full agreement with 

practices conducted by the Department of Forests.  

The model was implemented to the selected polygon where 

results indicate that the area is primarily classified as low priority 

(80%), with high priority and medium priority areas representing 

11% and 9%, respectively. However, when focusing solely on the 

burned area, the majority (52%) falls into the high-priority 

category, followed by medium-priority (40%) and low-priority 

(8%). Moreover, according to the restoration efforts implemented 

after the Argaka fire event by the DoF, only 0.59% of the burned 

area remained unburned. Regarding the restoration action, a 

small portion (4.62%) was selected for natural recovery, while 

the remaining burned area (94.79%) was subject to restoration 

efforts. 

By comparing the predicted reforestation strategies with the 

permanent sample points established by the Department of 

Forests to assess restoration efforts, the preliminary results 

indicate that the model achieves an Overall Accuracy (OA) of 

approximately 74.5%, demonstrating strong agreement with 

actual restoration outcomes. 

 
Figure 4 Priority of reforestation actions in Argaka fire event/ 

 

5. Conclusions 

Overall, the findings demonstrate that the proposed methodology 

for the identification of deforestation areas provides an accurate 

and reliable framework for detecting and monitoring 

deforestation, offering valuable insights for policymakers and 

stakeholders in managing and preventing forested ecosystems.  

 

Also, regarding the restoration module successfully prioritized 

reforestation actions based on burn severity and ecological 

recovery potential. The model demonstrated a strong agreement 

with actual restoration efforts, achieving an Overall Accuracy of 

74.5% when compared to field data. This approach effectively 

distinguished areas suitable for natural recovery from those 

requiring artificial restoration, providing a valuable decision-

support tool for post-fire management. The Green-HIT project 

successfully demonstrates the integration of remote sensing 

techniques for effective forest management and is highlighted 

that is the first tool in Cyprus that uses these technologies. The 

deforestation module accurately identifies the deforested areas 

and similarly, the reforestation module accurately prioritizes the 

restoration actions in burned areas. Also, the use of multi-

temporal remote sensing data and geospatial analysis enables 

continuous monitoring, ensuring a proactive approach to forest 

conservation. These findings highlight the platform’s capabilities 

to support forest monitoring, biodiversity conservation, and 

climate change mitigation, providing a valuable tool for 

sustainable environmental management.  

 

Our future steps focus on the time series analysis for the 

investigation of the recovery of deforested areas as well as to 

exploit the effectiveness of restoration actions in the burned 

areas.   
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ABSTRACT 

Wildfires are increasingly destructive due to climate change, longer fire seasons, and extreme weather 
conditions, posing significant risks to ecosystems, human safety, and economic stability. This study presents an 
integrated wildfire safety system developed within the GREEN-HIT research project in Cyprus, leveraging 
artificial intelligence (AI) to enhance wildfire prediction, detection, and propagation analysis. The system 
combines historical weather and fire occurrence data to train a machine learning model capable of predicting 
fire outbreaks with high accuracy. It incorporates real-time environmental monitoring through a dense sensor 
network, enabling early fire detection by correlating CO2 levels with fire risk thresholds. Additionally, the 
system includes a fire propagation module that dynamically models fire spread based on wind and topography, 
using a combination of geospatial algorithms and terrain correction factors derived from Van Wagner’s fire 
behaviour equations. The model calculates the Rate of Spread (ROS) by integrating wind and slope factors to 
predict the fire’s path with greater accuracy. This multidisciplinary approach not only improves early warning 
capabilities and emergency response but also supports strategic fire management decisions through accurate 
simulations of fire behaviour in real-world terrain.  

1 INTRODUCTION 
Wildfires are one of the most destructive natural disasters, posing a significant threat to ecosystems, endangering 
human lives, and causing huge economic losses, highlighting the urgent need for innovative solutions in 
prediction, detection, and mitigation. Research has shown that the total burned area caused by wildfires has 
decreased in recent years, with studies suggesting this decline may be attributed to improved fire management 
strategies, land use changes, and urbanization, yet more research is needed [1], [2], [3]. However, there is a 
steady increase in the average global temperature due to climate change. 2024 has been confirmed as the 
warmest year on record, with an increase of 1.6 degrees since the pre-industrial era from 1850 to 1900 [4]. As 
global temperatures increase, there is a noticeable increase in the fire weather season length [5]. These longer 
fire weather seasons generate conditions such as prolonged droughts, heatwaves, and reduced humidity, creating 
an environment contributing to more extreme wildfire events worldwide[6]. There are a lot of variables that 
determine whether a wildfire will occur or not but most of the times there are some thresholds that can act as a 
warning that one can break out. The three main factors influencing the breakout of a wildfire are appropriate 
weather conditions such as wind, high temperatures, and low humidity, ignition points and fuel resources to 
burn [2], [4]. Jones et al. [2] also includes states that prolonged droughts can lead to an abundance of fuel that 
can lead to more extreme wildfire events. Consistently monitoring the thresholds of these variables can serve 
as an essential early warning system for forestry departments. This advanced notice allows them to implement 
proactive measures to mitigate wildfire risks, improve preparedness, and quickly detect any outbreaks before 
they escalate into larger, more destructive events. Research has shown that by using specific climate indicators, 
intelligent systems can help predict the occurrence of wildfires [5], [6]. 

Our research focused on developing and implementing an innovative wildfire safety system that utilizes 
artificial intelligence (AI) tools to reduce the occurrence and impact of wildfires in Cyprus. This system is a 
component of the GREEN-HIT research project, funded by the Research Promotion Foundation in Cyprus. It 
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aims to deliver a comprehensive wildfire management solution by integrating predictive machine learning 
models, real-time detection, and fire propagation analysis. Within the context of the project, we deployed more 
than 100 sensors in specific locations in Cyprus that are able to measure specific weather indicators that can 
help feed the AI model allowing it to determine the percentage of fire probability. Furthermore, the system 
utilizes real-time sensor data to accurately detect the presence of a wildfire. In the event of a wildfire, it uses 
environmental factors such as wind and terrain characteristics to simulate and predict the potential spread of the 
wildfire, helping the fire department make faster and more informed decisions. 

2 FIRE PREDICTION, DETECTION AND PROPAGATION 
Modelling of fire processes across multiple scales requires expertise in wildfire science. The combination of an 
ignition source and adequate conditions for the fire to spread leads to the probability of a fire[7]. The causes of 
forest fires are diverse, and their distribution varies from country to country and can also vary spatially and 
temporally within the same country [8]. Meteorological factors have a large impact on the occurrence and spread 
of fires in forests [4], [9], [10]. Climate, meteorology, and environmental conditions cannot be ignored as they 
contribute to the occurrence, fire, and spread of accidental forest fires. To this end, we used weather data and 
fire occurrence data in Cyprus to train a machine learning model that could predict the occurrence of a fire. 
Furthermore, we developed modules where the system can utilize sensor data to detect fire occurrence and a 
module that can predict the fire spread based on wind and terrain data. 

3 FIRE PREDICTION MODULE 
The fire prediction model was trained on a dataset containing weather data collected between 2010 and 2018 
from six weather stations across Cyprus. The dataset included temperature and relative humidity measurements 
recorded twice daily at 8:00 AM and 1:00 PM. This was combined with a record of all fire occurrences in Cyprus 
between 2010 and 2018 to allow the machine learning model to identify the triggers that would lead to a fire. A 
significant number of the fires were human-induced; however, they were included in the analysis as valid 
ignition points, since they can still lead to wildfires under favourable weather conditions.  

 
Figure 1. Feature corelation with fire events at 8AM 

  
Figure 2. Feature corelation with fire events at 1PM 

From Figure 1 and Figure 2, we can see that temperature has a positive correlation with fire occurrences whereas 
relative humidity shows a moderate negative correlation suggesting that the higher the temperature and the 
lower the relative humidity the more likely for a fire outburst. 
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We began model testing by optimizing Logistic Regression (LR), achieving accuracy scores of 0.7892 and 
0.7886 for the 8 AM and 1 PM datasets, respectively. Following this, we applied the Extreme Gradient Boosting 
(XGBoost) algorithm, chosen for its efficiency and strong performance in both classification and regression 
tasks. Additionally, we evaluated several other machine learning models to compare their effectiveness. We also 
tried to overcome our imbalanced dataset by generating synthetic data using Synthetic Minority Over-sampling 
Technique (SMOTE) but the accuracy did not improve but conversely it led to a decrease of accuracy (Table 1). 

Table 1. Model accuracies 

Model  Accuracy  Accuracy using weights  Accuracy using SMOTE  
Random Forest  0.769  0.782  0.798  

XGBoost  0.798  0.798  0.725  
SVM  0.788  0.796  0.498  
KNN  0.767  0.761  0.773  
MLP  0.788  0.796  0.510  

After selecting XGBOOST as the best model we explored various hyperparameter values, and this led to an 
optimized model accuracy of 83.67% (Table 2).  

Table 2. Hyperparameter settings of XGBOOST 

learning_rate  0.2  
n_estimators  300  
max_depth  5  
subsample  1.0  

Colsample_bytree  1.0  
Optimized Model Accuracy  0.8367  

4 FIRE DETECTION MODULE 
A key component of the fire system was selecting the appropriate sensors to ensure the system received the 
necessary data. Wind speed and direction are crucial factors in forest fire applications that aid in fire behaviour 
prediction, fire spread patterns, safety of firefighters and air quality and smoke management. Smoke sensors 
(CO2, Temperature and Humidity) aid in alerting authorities and communities, assessment of environmental 
impact, support for firefighting operations and monitoring fire progress.  

The use of CO2 sensor networks for early wildfire warning has been validated in multiple research studies, 
demonstrating their potential to significantly enhance fire detection capabilities [11], [12]. These sensors are 
capable of continuously monitoring atmospheric carbon dioxide levels, which can rapidly increase during the 
early stages of a wildfire due to the combustion of biomass. By deploying a network of such sensors across high 
risk areas, researchers have shown that it is possible to detect fires more quickly than with traditional methods 
such as satellite imaging or lookout towers. Additionally, sensor networks offer the advantage of real-time, 
ground-level data collection, which enables faster emergency response and more precise localization of fire 
outbreaks. This approach not only improves situational awareness for firefighting efforts but also contributes to 
the broader goal of minimizing environmental damage and protecting communities at risk. 

Collaborating with the forestry department, we identified two locations that were blind spots relating to the 
surrounding lookout towers and installed a number of sensors to detect fire. The CO2 data is transmitted to the 
fire detection module which uses the fire prediction data with the CO2 values to determine if a fire has started 
near the sensor. When the fire risk prediction is high then a lower CO2 threshold will trigger an event otherwise 
a higher CO2 level would be required. This significantly improves our ability to detect fires early during high-
risk conditions.  

5 FIRE PROPAGATION MODULE 
Predicting how a fire will spread is important for keeping people and property safe. If we know where a fire is 
likely to spread, firefighters can act faster and smarter. They can send help to the right places, warn people to 
leave when needed, and protect important buildings or natural areas. Calculating a fire’s path also helps in 
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planning where to stop the fire and how to keep it from getting worse. One of the most used models is the 
Rothermel surface fire spread model which was introduced in 1972 [13]. Currently there are  

To simulate wildfire spread in real-world terrain, it is essential to continuously determine new geospatial 
coordinates from the location a fire starts and is detected, towards its general movement propagation. This 
module calculates the general location of movement of the next fire propagation point based on a given starting 
location’s coordinates, distance, and directional bearing. The result can be used to extract topographic elevation 
data for slope and terrain analysis via external APIs that will be used to calculate the slope between the two 
points to further calculate slope factor, which will in turn be used as a crucial parameter to calculate the Rate of 
Spread of the identified fire. 

The algorithm uses spherical trigonometry to calculate a new geographic location, as latitude and longitude, 
based on an initial coordinate, while accounting for the curvature of the Earth. In this context, the initial 
coordinates come from a fire sensor from our Fire Detection module that has detected elevated CO2 levels, 
indicating the likely presence of a fire. The goal is to estimate how far the fire might spread, projecting a point 
150 meters away from the source in the direction of the wind. The directional bearing, expressed in degrees 
(where North is 0° or 360°, East is 90°, South is 180°, and West is 270°), determines the fire’s likely path. To 
perform the calculations, the algorithm first converts the wind bearing from degrees to radians, as trigonometric 
functions in Python operate using radians. To estimate the direct ground distance between the ignition point and 
the next point in the direction of the wind, the module employs the Haversine formula, which accounts for the 
Earth's curvature. The module computes the new position, effectively modeling the potential propagation of the 
fire. Once the trigonometric operations are completed, the script converts the resulting deltas from radians back 
into degrees. These are then added to the original coordinates, yielding a new estimated geographic position for 
the potential fire front. 

To add more precision to the prediction, the algorithm proceeds with an elevation query. It uses the new 
coordinates to construct a URL that requests elevation data from the OpenTopodata API [14], specifically 
querying the EUDEM 25m resolution dataset. This step ensures that the elevation of the predicted fire front is 
factored into further analysis, which can be critical for modeling fire behavior in complex terrain. 

5.1 Rate of Spread calculation 
To estimate the dynamic spread of a wildfire across different types of terrain and under varying environmental 
conditions, we developed a Python-based algorithm that adjusts the Rate of Spread (ROS). This calculation 
reflects how key external factors, like wind and slope, can significantly influence the spread of a fire. Starting 
with a baseline ROS value, which assumes a flat terrain with neutral conditions, the algorithm modifies this rate 
to account for real-world variables, making fire spread predictions more accurate and context-sensitive. 

The core of the algorithm is a function called calculate_ros, which takes three parameters. The first, flat_ros, 
represents the baseline rate at which fire spreads over flat terrain, measured in meters per minute. The second, 
wind_factor, accounts for the wind's effect on the fire front's acceleration. This factor is calculated based on 
wind speed and direction at a specific index or location. The third parameter, slope_factor, quantifies the impact 
of terrain slope, either moving uphill or downhill, on the speed of fire spread. Like the wind factor, the slope 
factor is determined at a particular index along the fire’s projected path. Together, these inputs allow the 
algorithm to dynamically model and predict fire behavior more realistically. This is represented by Eq. (1). 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹 = 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇_𝒓𝒓𝒓𝒓𝒓𝒓 × (𝟏𝟏 + 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘_𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 + 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔_𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇) 

(1) 

5.2 Wind factor calculation 
To accurately capture and quantify the wind factor influence, we implemented a wind factor calculation model 
that uses an exponential response to wind speed. This approach allows the model to reflect the real-world, 
nonlinear impact that wind can have on wildfire dynamics. 

At the core of this implementation is the calculate_wind_factor function, which estimates the contribution of 
wind to fire propagation using a specific exponential formula Eq (2). In this formula, V represents the wind 
speed in meters per second (m/s), which is sourced from the nearest weather station deployed in the Cyprus 
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forest. The variable k denotes an empirically determined wind influence coefficient, with a default value of 
0.05and the constant e is Euler’s number, approximately equal to 2.718. 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  𝑒𝑒(𝑘𝑘 × 𝑉𝑉) 

(2) 

This exponential model is designed to capture the fact that the relationship between wind speed and fire spread 
is not linear. Even small increases in wind speed can result in disproportionately large increases in the rate at 
which a fire spreads. By incorporating this exponential behaviour into the model, the algorithm provides a more 
accurate and realistic simulation of fire dynamics under varying wind conditions. 

5.3 Slope factor calculation 
Topographic slope plays a crucial role in wildfire behaviour, directly affecting the speed and intensity of fire 
spread. Fires tend to move more rapidly uphill because the flames and heat rise, preheating and drying the 
vegetation ahead of the fire. Conversely, fires on downhill slopes generally slow down due to reduced radiant 
and convective heat reaching the unburned fuel. To realistically capture this terrain-dependent behaviour, we 
adopted a model based on Van Wagner’s fire behaviour equations, which are widely cited in wildfire science 
for their empirical accuracy and practical applicability [15]. 

The core of the implementation is the van_wagner_slope_factor function, which calculates a slope correction 
factor based on the terrain’s angle of inclination or declination. The model is divided into two regimes: negative 
slopes (downslopes) and positive slopes (upslopes). 

For negative slopes (ranging from -45° to 0°), the model acknowledges that fire typically slows when moving 
downhill. However, this deceleration is not always consistent or linear. For example, on slopes steeper than -
22°, fires may still spread aggressively due to factors such as falling burning debris (e.g., rolling logs or flaming 
pinecones) and wind-driven chimney effects in valleys. In such cases, Van Wagner’s model assigns a slope 
factor close to 1.0, indicating that the fire behaves nearly as it would on flat terrain. For milder downhill slopes 
(from -22° to 0°), a quadratic equation is used to gradually reduce the effective Rate of Spread (ROS), reflecting 
the decreasing influence of slope. For steep declines beyond -22°, the factor resets to 1.0, suggesting no further 
suppression of fire spread. 

In contrast, positive slopes (ranging from 0° to 31°) significantly accelerate fire propagation. This is due to the 
preheating effect, where flames and hot air rise and dry out the vegetation located upslope, making it more 
susceptible to ignition. The steeper the slope, the more pronounced this effect becomes. For these uphill slopes, 
Van Wagner’s exponential formula Eq. (3) is applied, using the slope angle in radians to reflect the rapid increase 
in fire spread with increasing steepness [15]. 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = exp (3.533 ×  tan(𝜃𝜃)1.2) 

(3) 

To maintain accuracy and prevent computational errors, the function includes input validation to ensure that 
slope angles remain within the valid range defined by Van Wagner’s model, from -45° to 31°. 

This slope correction factor is applied to modify the baseline ROS in the broader fire propagation model. When 
used alongside wind and vegetation models, it enables a more comprehensive and realistic simulation of wildfire 
behavior across complex terrain. Additionally, the modular structure of the function makes it well-suited for 
integration into GIS-based fire modeling platforms or real-time emergency response systems. 

6 CONCLUSIONS 
The wildfire safety system developed through the GREEN-HIT project represents a significant advancement in 
fire prevention, detection, and response. Key takeaways from this research include: 

• Fire Prediction Module: 
o A machine learning model, trained on historical weather and fire occurrence data in Cyprus, 

achieved an optimized accuracy of 83.67% using the XGBoost algorithm. 
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o Temperature and relative humidity were identified as key predictors, with temperature showing 
a positive correlation and humidity a negative correlation with fire occurrences. 

• Real-Time Fire Detection: 
o Over 100 environmental sensors were deployed across high-risk areas, including CO2, 

temperature, humidity, and wind sensors. 
o Dynamic CO2 thresholding based on real-time fire risk significantly enhanced early detection, 

especially in sensor "blind spots" identified with the help of forestry departments. 
• Fire Propagation Modelling: 

o A custom-built algorithm uses wind direction, terrain data, and geospatial coordinates to 
simulate fire spread. 

o The system factors in both wind and slope using empirical models like the Rothermel model 
and Van Wagner’s slope correction, ensuring realistic simulation of wildfire behaviour in 
diverse terrain. 

• Scalability and Practical Impact: 
o The system supports real-time situational awareness, helping emergency services prioritize 

response efforts, issue evacuation warnings, and protect critical infrastructure. 
o Designed to be scalable and integrable into broader GIS and emergency management systems. 

This integrated approach demonstrates how artificial intelligence, combined with IoT and geospatial modelling, 
can revolutionize wildfire management by enabling smarter, faster, and more informed decision-making. In the 
future we aim to collect more data to enrich the dataset and to create a more accurate model for fire prediction. 
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Abstract: Global forest degradation and deforestation present urgent environmental chal-
lenges demanding efficient strategies for ecological restoration to maximize the impacts
and minimize the costs. This study aims to develop a spatial decision support tool to
prioritize post-fire restoration actions in Mediterranean ecosystems, with a focus on Cyprus.
At the core of this study is the GRESTO Index (GreenHIT-RESTORATION Index), a novel
geospatial tool designed to guide reforestation efforts in fire-affected areas. GRESTO in-
tegrates geospatial data and ecological criteria through a multi-criteria decision-making
approach based on the Analytic Hierarchy Process (AHP). The model incorporates nine
key indicators, including fire severity, tree density, land cover, fire history, slope, elevation,
aspect, precipitation, and temperature, and classifies restoration priority zones into low,
medium, and high categories. When applied to the Solea fire event in Cyprus, the model
identified 24% of the area as high priority, 66% as medium and 10% as low. The validation
against previous restoration actions implemented in the study area demonstrated reliable
agreement, with an overall accuracy of 80.9%, a recall of 0.70 for high priority areas, and
an AUC of 0.79, indicating very good separability. Moreover, sensitivity analysis further
confirmed the robustness of the model under varying parameter weights. These findings
highlight the GRESTO model’s potential to support data-driven, cost-effective restoration
planning aligned with national and international environmental goals.

Keywords: post-fire restoration; multi-criteria analysis; AHP; wildfires; Cyprus; remote
sensing; decision making; GEE

1. Introduction
At a global level, forests are a vital natural resource providing multiple economic,

social, environmental, and cultural benefits, including climate regulation and greenhouse
gas balance [1,2]. However, despite these crucial benefits, forest ecosystems are facing
increasing pressures from both natural and anthropogenic factors [3–5]. Forest ecosystems
are particularly crucial in the Mediterranean landscape, where they are distinguished by
their rich biodiversity [1]. This region, however, is increasingly threatened by climate
change and human activities, which increase forest vulnerabilities [6]. Despite their recog-
nized immense importance, it is generally accepted that forests are becoming increasingly

Remote Sens. 2025, 17, 1269 https://doi.org/10.3390/rs17071269

https://doi.org/10.3390/rs17071269
https://doi.org/10.3390/rs17071269
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-2974-8832
https://orcid.org/0000-0003-0056-5629
https://orcid.org/0000-0002-7262-8556
https://orcid.org/0000-0002-4543-3112
https://orcid.org/0000-0003-4149-8282
https://orcid.org/0000-0001-5370-8692
https://doi.org/10.3390/rs17071269
https://www.mdpi.com/article/10.3390/rs17071269?type=check_update&version=1


Remote Sens. 2025, 17, 1269 2 of 23

vulnerable as a result of disturbances caused by climate change, which manifest as extreme
weather events such as heat waves, torrential rain, droughts, and strong winds [2,6]. These
disturbances, in combination with human-induced pressures, increase the degradation of
forest ecosystems and contribute to long-term environmental challenges [7]. As a result of
the above, changes in land use and land cover, increased pest infestations, the degradation
or even the loss of natural habitats, pollution, and disease spread are observed, leading to
deforestation [1,8].

Among these pressures, wildfires stand out as one of the most direct and destruc-
tive consequences of climate change [9,10]. Forest fires can result from natural causes,
including lightning or human activities, such as deliberate arson [11]. In recent years, the
frequency and severity of wildfires have increased due to climate change, which increases
fire susceptibility through prolonged droughts and extreme weather [12]. Wildfires can be
destructive, affecting ecosystems, damaging properties, endangering lives, and leading
to significant environmental degradation [13,14]. Indeed, thousands of hectares of forest
areas burn worldwide. Statistically, wildfires occur over various parts of the world more
than one thousand times yearly, making them one of the most frequent natural geophysical
disasters [10,15]. According to recent studies, the global burned area is estimated annually
based on coarse satellite images at around 3.5–5 million km2 [16,17]. Although fire is an
integral part of many ecosystems, in recent decades, there has been a significant increase
in the number of fires in the Mediterranean region as well as in the extent of the burned
surface [1,2]. This is due to the features of the Mediterranean ecosystem that relate to
climate and vegetation [6].

In light of these increasing challenges, restoration efforts are essential to recover ecosys-
tems damaged by disturbances such as fires [18]. Restoration is the process that serves to
recover an ecosystem that has been degraded or destroyed, for example, after a fire [19,20].
Post-fire forest restoration aims to restore the forest ecosystem to its historical state to
regain its ecological integrity as well as resilience [21,22]. Restoration strategies are defined
based on the degree of degradation of ecosystems and the vegetation recovery capacity,
so post-fire restoration actions focus on increasing resilience and resistance by preserving
soil and water resources [19]. Moreover, the vegetation regeneration rate can affect the
post-fire and flooding risk [23]. Given the extensive global scale of forest degradation and
deforestation, as well as the significant costs associated with ecological restoration, it is
crucial to identify priority areas for restoration and to evaluate the cost-effectiveness of
various restoration methods [24–26]. The selection of an appropriate restoration approach
is influenced by the evaluation of various factors (environmental, social, and economic),
including recovery rate, degradation levels, land use, and topographic features [27]. Apart
from this, the selection is also influenced by the objective of the restoration, the potential
limitations, and the available resources. Commonly, two primary approaches are utilized in
forest restoration [27]: One is natural restoration, which relies on the seed reserves released
from the parent stand after the fire. Therefore, no intervention is made in areas where
sufficient seeds have been recorded or are present on the soil surface or in surviving stands
that remain after the fire. The other is artificial restoration, which involves the application
of management techniques such as planting seeds or seedlings [2,27–29].

According to the literature, the increasing availability of earth observation satellites
and imagery since 1980 has significantly contributed to research and monitoring in various
fields, including forestry [30–35] and natural hazard assessment [36–39]. In the context of
post-fire restoration, remote sensing plays a critical role in site selection, vegetation recovery
assessment, and monitoring post-restoration dynamics [40]. According to [2], there is a
limitation in integrating various models into a single framework that can be adopted at
regional and national levels for planning and decision-making purposes. Remote sensing
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overcomes these limitations by offering advanced technological solutions that aid in the
monitoring and evaluating of restoration efforts [16]. Regarding restoration monitoring and
management, several studies utilized remote sensing approaches to support this process.
For example, high-resolution terrain data helps in site or plot selection by providing
information on suitable microtopography [41,42]. It also aids in identifying landscape-scale
features which are positively associated with restoration success, such as tree species [31],
which is essential for monitoring restoration projects and post-restoration invasive species
management [43,44] and is also helpful for damage assessment after fire events [45,46].
Moreover, time series analysis using available observations has been extensively used for
post-fire forest recovery [47–51]. Remote sensing sensors, both spaceborne and airborne,
play a crucial role in evaluating and monitoring ecological restoration strategies [52]. Data
products, such as Digital Terrain Models (DTMs) [53] and vegetation canopy height models
obtained from LiDAR [54], as well as multispectral images captured by UAVs (Unmanned
Aerial Vehicles) or satellite sensors, are invaluable [55]. Additionally, hyperspectral imagery
and post-processed spectral data products, like vegetation indices (including NDVI, NBR,
SAVI, EVI, etc.), burned area maps, and evapotranspiration (ET) data, support frequent
monitoring and help with the successful documentation of metrics in managed or restored
areas [56–60].

The Analytic Hierarchy Process (AHP) is one of the most widely used methods for
multi-criteria decision-making and was originally proposed by Saaty et al. [61]. The AHP
serves as a valuable tool for decision-makers, enabling them to evaluate various essential
elements through pairwise comparisons [62]. In the present study, AHP was employed
to assess the ecological criteria for identifying areas suitable for reforestation. Several
studies confirm this choice; for instance, ref. [63] comparing AHP with other evaluation
approaches—ELECTRE, TOPSIS, and VIKOR—highlights its flexibility in assigning dif-
ferent weights to criteria. Moreover, AHP has also been used to analyze silvicultural
treatments on trade-offs [64], to integrate climate change criteria in reforestation plan-
ning [65], and to develop suitability maps for identifying priority restoration zones after
fire events [29]. Similar approaches that prioritize restoration actions using AHP have also
been undertaken in various studies [66–71].

Predicting the ability for regeneration in burned areas requires thorough knowledge
of ecosystem dynamics, and this information enables decision-makers to allocate limited re-
sources effectively by helping them to decide whether or not to support restoration actions [2].
The present study introduces the GRESTO Index (GreenHIT-RESTORATION Index), a tool
designed to prioritize and recommend restoration actions for burned areas in Mediterranean
ecosystems. It is highlighted that the proposed methodology is the first in Cyprus to utilize
earth observation techniques for this purpose, offering a novel and scalable solution.

This study aims to develop a decision support tool for post-fire restoration prior-
itization using geospatial analysis and multi-criteria decision-making. To achieve this,
the development of the GRESTO Index focused on three main objectives: (1) defining
the criteria and corresponding geospatial data necessary for a multi-criteria analysis,
(2) implementing this analysis using the AHP to prioritize areas in need of reforesta-
tion, and (3) validating the model by applying it to the Solea fire event in Cyprus, where
reforestation efforts had previously been undertaken by the Department of Forests.

This study aligns with global environmental initiatives, such as the European Green
Deal’s goal of achieving climate neutrality by 2050, the UN’s Decade on Ecosystem Restora-
tion [72], and the Bonn Challenge, which aims to reduce CO2 emissions and enhance
greenhouse gas absorption [73]. Furthermore, the research highlights the role of remote
sensing techniques and earth observation data in supporting informed decision-making for
sustainable forest management.
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2. Materials and Methods
2.1. Study Area

This study was conducted in an area affected by a wildfire near the village of Solea
in the Nicosia district of Cyprus, which is located in the Eastern Mediterranean region
(Figure 1). The wildfire occurred on 19 June 2016, according to the Post-Fire Management
Plan for the area [74]. The burned area is part of the Adelfi Forest, situated at an altitude
between 495 and 1253 m above sea level. The terrain is steep and characterized by large
slopes. Specifically, only 18.24% of the burned area is characterized by gentle slopes (0–25%),
while 23.86% of the area features slopes greater than 100%, posing significant challenges
for restoration.
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Regarding the climate, the conditions vary with elevation; for instance, in the higher
altitude zone, vegetation benefits from favorable conditions, including an average annual rain-
fall of 868.2 mm and milder temperatures. In contrast, the lower elevations face a six-month
dry season (April–October), with lower annual rainfall (407.5 mm) and extreme maximum
temperatures exceeding 42 ◦C, which significantly affect plant survival and growth.

The fire event destroyed 18.57 km2, making it one of the largest fire events in Cyprus’s
state forest history, according to the reports provided by the Department of Forests [75]. The
area is characterized by the predominant vegetation in these regions consisting mainly of
Pinus brutia forests, with an understory comprising herbaceous vegetation, low shrubs (e.g.,
Cistus spp.), and large shrubs (e.g., Quercus alnifolia, Pistacia terebinthus, and Olea europaea).
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Based on the records provided by the Department of Forests in Cyprus from 2000 to
2023, forest fires in Cyprus destroyed over 552.4 km2 of burned areas, including state forests
and the surrounding areas. Additionally, the economic cost of forest fires in Cyprus for
2021 specifically was EUR 18.6 million, while every year, one-third of the Department of
Forests’ budget under the Ministry of Agriculture, Rural Development and Environment,
which corresponds to EUR 15 million, is allocated to forest fire response. Furthermore,
focusing on the reforestation actions for the Solea and Argaka burned areas, the reforestation
measures and their monitoring costs were EUR 1,532,387 and EUR 1,350,952.4, respectively.
Therefore, the GRESTO Index developed for the Green-HIT platform is expected to have a
significant economic impact nationally, and the proposed methodology aims to mitigate
these costs [76].

2.2. Methodology

The methodology used in this study was based on the AHP as a spatial multi-criteria
decision analysis tool, as shown in Figure 2. The process can be divided into four main
steps: (a) selection of the criteria, (b) standardization of the criteria, (c) assignment of the
criteria weights, and (d) evaluation and ranking of the results.
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in Cyprus.

The GRESTO Index was developed utilizing the GEE, a cloud-based platform for
scientific analysis and the visualization of geospatial datasets. GEE enabled efficient access
to satellite imagery and the implementation of remote sensing algorithms for large-scale
spatial analysis [77–79].
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2.2.1. Selection of Criteria

A fundamental requirement for effectively restoring vegetation and addressing the
environmental issues that arise after a fire is the timely planning and implementation of
actions outlined in a post-fire management plan for burned areas. In general, the measures
taken to restore vegetation in burned areas depend on the specific ecological conditions,
both before and after the fire. In particular, these measures are influenced by several factors
including (a) the composition and structure of the pre-existing vegetation, (b) the intensity
of the fire, (c) the presence or lack of living trees, (d) the availability of a necessary quantity
of seeds in the burned trees or on the ground, (e) the topography of the area, as well as the
(f) local climate [80–83].

The development of the model incorporated several essential factors, specifically
topographical, meteorological, and environmental. These factors were selected based on
consultations with experts and are well documented and supported by researchers and
specialists in the relevant literature, with specific references reported in Table 1. Also, it
was highlighted that the prioritized indicators that could be derived from freely available
data were also helpful for determining areas in need of restoration.

Table 1. List of main selected indicators and basic information.

Criteria Description Source

Topographic information
(Elevation, slope, aspect)

Topography influences both surface runoff dynamics and ecological
patterns [84,85]. Lower elevation presents slower flow rates than

higher elevations, leading to water accumulation in valleys, which
can impact climate conditions, vegetation types, species

distribution, and ecological recovery [86]. Steeper slopes present
unique challenges, including higher risks of soil erosion, increased
water runoff speeds, and changes in soil moisture retention, all of
which influence tree species selection and survival rates, [87,88] as
well as complicating logistics [89]. The steep areas also present a
higher risk of landslides and floods [90]. Additionally, the aspect
can influence microclimate conditions like sunlight exposure and

moisture levels; for example, east-facing slopes receive more
incoming solar radiation in mountainous areas, which helps in
selecting sites that can support vegetation regeneration [38,66].

SRTM (GEE)

Land cover

The land cover and the proximity to forests were used because this
study focused on restoring forested and vegetated areas. Also, the
proximity to forest areas was prioritized due to their proximity to

reservoirs of native species [91].

Corine Land Cover/
ESA World Cover (GEE)

Tree density

The regeneration of both species and forest dependent on the
canopy seed bank [92]. In this study, the tree density was utilized,

due to the assumption that in denser forests, there is larger
seed production [93].

Copernicus Land [94]

Vulnerability to wildfire hazards

In terms of vulnerability to wildfire hazards, the analysis
considered the burn severity and fire frequency. Specifically, in this
study, it was assumed that the burn severity and the fire frequency
could determine the potential for natural regeneration, suggesting
that active restoration actions should prioritize ecosystems most

heavily impacted by fires [95,96]. Additionally, burn severity
influences soil quality and seed bank viability. High-severity fires

can destroy seed banks and soil structures, leading to artificial
reforestation actions with resilient species, while lower severity

fires might allow for natural regeneration [97].

Sentinel-2 (GEE)
Fire frequency (EFFIS)

Meteorological factors
(mean temperature and

total precipitation)

The meteorological factors were selected to identify suitable
conditions for the growth of the majority of the species. For

example, high altitudes due to lower temperatures are ideal for
many species. Additionally, the precipitation and temperature

variations depend on the aspect [24].

Temperature: MODIS (GEE)
Precipitation: CHIRPS(GEE)

Based on this approach, nine factors were selected, which were as follows: topograph-
ical factors, including elevation, slope, and aspect; and meteorological factors, including
temperature and precipitation. Also, regarding the environmental factors, the model
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included land cover, tree density, dNBR (differenced Normalized Burn Ratio), and fire
frequency. Each of these factors provided critical information necessary for developing a
model identifying priority areas for reforestation, as detailed in Table 1.

Criteria Standardization

For this study, several factors were selected for the multi-criteria analysis, as described
in Section 2.2.1. To combined factors with the same scale of value, the standardization of
each factor is performed in this section, as shown in Table 2, where the original values are
transformed into comparable units [98,99].

Table 2. Reclassification of the criteria for the identification of priority areas for natural or artificial
reforestation.

Criteria Excluded Low Medium High Source

Topographic
information

Elevation (m)
0–300

(coastal/
plain)

300–500
(hilly)

>500
(semi-mountainous

–
mountainous)

[100]

Aspect (◦)
N,

NE,
NW

E,
SE

S,
SE,
W

[66,86]

Slope (◦) >25 10–25 0–10 [85,101]

Land cover

Corine land
cover

Non-
vegetated

Grasslands and
shrublands - Forests [95,102,103]

Tree density (%) >70 15–70 <15 [104]

Vulnerability to
wildfire hazards

Fire history
(reoccurrence) 1 2 >3 [95]

Fire Severity
(* dNBR—
Sentinel-2)

≤100 100–270 270–440 ≥440 [105]

Meteorological
factors

Precipitation (mm) >700 400–700 <400 [106]

Temperature (◦C) 10–28.95 28.95–32.04 >32.04 [106,107]
* The dNBR derived from Sentinel-2 imagery with a spatial resolution of 10 m. For the calculation of the dNBR, a
pre-fire image acquired on 18 June 2016 and a post-fire image acquired on 28 June 2016 were used.

Criteria Weight

To prioritize areas effectively, criteria sets were quantified and weights were assigned
to determine their significance in decision-making processes. The proposed methodology
was conducted utilizing the AHP. In this method, the AHP was involved in the weighting
and ranking of the selected criteria, enabling a hierarchical structure that allowed for the
pairwise comparison, making it easier to understand and prioritize the most critical aspects
of the model based on Saaty et al. [61], and to compare all factors against each other based
on their importance on a scale of 1 to 9, as shown in Table 3 below. Value 1 represents
equal importance between two factors, which means that they contribute equally to the
objective. In contrast, value 9 represents extreme importance, which means that evidence
favoring one over the other is of the highest possible validity. The importance of each
factor was assigned based on the stakeholders’ discussion, the literature review, and the
research team’s expertise. Specifically, insights were gathered through interviews and
in-depth discussions with all available experts from the Department of Forests, who shared
their practical experience in post-fire restoration. In particular, a list of potential factors
contributing to restoration actions was prepared, and through the interviews with the
experts from the Department of Forests, we discussed the relative importance of each factor
and considered them in the context of restoration planning. These consultations were
complemented by a review of official post-fire management plans implemented in burned
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areas provided by the Department of Forests for ensuring that the selected criteria aligned
with real-world restoration practices.

Table 3. Saaty rating scale.

Intensity of Importance Remark

1 Equal importance
3 Moderately more important
5 Strongly more important
7 Very strongly more important
9 Extremely more important

2, 4, 6, 8 Intermediate values

In addition to expert input, a scientific literature review was conducted to support
the weighting decisions. Previous studies using AHP in similar contexts [66,85,95,108,109]
emphasized the relevance of factors such as slope, vegetation type, and climate variables in
post-fire or reforestation planning. Taking into consideration the collected information and
the literature review, the final weights were estimated.

Following this, the final qualitative weights were determined using the judgment
matrix given in Equation (1), which indicates the degree of the experts’ preference between
the individual criteria influencing the selection of the optimal placement. Specifically, the
standardized relative weight was determined by dividing each element of the pairwise
matrix by the total sum of its corresponding column. According to the results obtained from
this approach, the higher the resulting weights, the greater the influence of the parameters
on the reforestation actions based on their relative importance. Also, each element within
the matrix was divided by the sum of its row to create a standardized pairwise comparison
matrix. The weight for each criterion was then determined by calculating the average of
the normalized values for each factor.

A =


C11 C12 · · · C1(n−1) C1n

C21 C22 · · · C2(n−1) C2n
...

...
. . .

...
...

Cn1 Cn2 · · · Cn(n−1) Cnn

 (1)

Additionally, to ensure the consistency of the pairwise comparison factors, the Consis-
tency Index (CI) was used, based on Equation (2)

CI =
λmax − 1

n − 1
(2)

where λmax = the largest eigenvalue of the pairwise comparison matrix evaluation and n
is the number of criteria used in the analysis. λmax is given by Equation (3). In detail, the
eigenvalues (or relative weights) were calculated by averaging the rows of each matrix,
and the maximum eigenvalue was equal to the number of factors. In cases where λmax = n,
the judgments were consistent.

λmax =
n

∑
i

CVij (3)

After that, the Consistency Ratio (CR) was calculated based on Equation (4) to assess
the reliability of the findings compared to the random judgments. According to the CR
values, when the CR was 0.10 or greater, the judgments were unreliable, which meant
that the weight values of the matrix indicated inconsistencies and the AHP may not have
provided a meaningful result, and a lower CR indicated more consistency [98].
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CR =
CI
RI

(4)

where the RI is the Ratio Index for different ‘n’ values that were obtained, as shown in
Table 4.

Table 4. Random Consistency Index.

n 1 2 3 4 5 6 7 8 9 10

Random Consistency Index (RI) 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

Consequently, the aggregation was performed using the weighted linear summation
method. Specifically, the raster layer for each factor was multiplied by its respective
criterion weight, and after that, they were summed, as indicated in Equation (5). Based on
this, a final map identifying the priority zones for reforestation was developed.

RN =
n

∑
i=1

(wi∗χi) (5)

where RN is the reforestation need, wi is the weight for each factor, χi is the factor I, and n
is the number of factors.

Evaluation and Ranking Results

The evaluation of the model was conducted using the sensitivity analysis technique.
Given that using weights can introduce subjectivity, a sensitivity analysis was incorporated
to quantify the impact of variations in specific inputs on the overall outcomes. This analysis
provided insight into the influence of each weight on the final results. The weight values
were adjusted one at a time by ±20%, starting from 0 to ±100% based on the method
described in [90], and the area of each class was calculated accordingly.

Validation of the Model

The effectiveness of the GRESTO model was assessed through an accuracy evaluation.
For this study, a confusion matrix was used following a stratified random sampling ap-
proach. A total of 1000 random samples were generated and proportionally allocated to
each restoration action according to their spatial extent in the reference map. Specifically,
the sampling included 40 samples for the low-priority class, 720 samples for the medium-
priority, and 240 samples for the high-priority areas. Based on these samples, the values
were extracted from the map generated based on the GRESTO model and compared with
the actions conducted by the Department of Forests. After that, the evaluation metrics were
computed using the generated confusion matrix in accordance with established practices
in remote sensing accuracy assessment, as described by [110,111]. The evaluation included
the overall accuracy (OA), the precision, the recall, and the F1-score.

The confusion matrix cross-tabulated the ground reference class against the classified
results per thematic category. The confusion matrix was divided into four categories: True
Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN). The OA
represented the percentage of pixels assigned with the correct label. It was calculated as
the total number of correctly identified pixels divided by the total number of pixels in the
sample. Precision (User Accuracy) represented the proportion of the pixels in that class
correctly identified as true. Recall (Producer Accuracy) meant the proportion of values the
model correctly predicted from the actual data. Finally, the F1-score reflected the harmonic
mean of recall and precision [112,113].
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Additionally, a multi-class Receiver Operating Characteristic (ROC) analysis was
performed using the one-versus-rest strategy, and the Area Under the Curve (AUC) val-
ues were calculated for each class [114,115]. This approach was implemented because
it provided insights into the model’s ability to distinguish each priority class, where the
higher AUC values indicated better class separability. Specifically, values between 0.5 and
0.6 indicated poor performance, 0.6–0.7 fair, 0.7–0.8 good, 0.8–0.9 very good, and 0.9–1.0
excellent [116].

Accuracy =
TP + TN

TP + FP + FN + TN
, (6)

Precision =
TP

TP + FP,
(7)

Recall =
TP

TP + FN
, (8)

F1 − Score = 2 ∗ Precision × Recall
Precision + Recall

, (9)

3. Results
3.1. Analytical Hierarchy Process (AHP) Results and Suitability Maps

A pairwise comparison was conducted among all pairs of the nine selected parameters
to calculate the weight assigned to each factor. Next, the parameters were compared
based on their importance in forest restoration actions, using the method proposed by
Satty et al. [98] and as described in the Methodology section. The results of the pairwise
comparison of potential independent variables contributing to the prioritization of post-fire
restoration actions, based on their importance on a scale of 1–9, are presented in Table 5.

Table 5. Pairwise comparison between the nine criteria involved in the post-fire restoration.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(1) Fire Severity 1.00 5.00 2.00 3.00 5.00 7.00 7.00 5.00 5.00
(2) Fire History 0.20 1.00 0.33 0.33 3.00 4.00 4.00 3.00 3.00
(3) Tree Density 0.50 3.00 1.00 2.00 6.00 7.00 7.00 5.00 5.00
(4) Land Cover 0.33 3.00 0.50 1.00 5.00 6.00 6.00 4.00 4.00

(5) Slope 0.20 0.33 0.17 0.20 1.00 2.00 2.00 0.33 0.33
(6) Elevation 0.14 0.25 0.14 0.17 0.50 1.00 1.00 0.33 0.33

(7) Aspect 0.14 0.25 0.14 0.17 0.50 1.00 1.00 0.33 0.33
(8) Precipitation 0.20 0.33 0.20 0.25 3.00 3.00 3.00 1.00 1.00
(9) Temperature 0.20 0.33 0.20 0.25 3.00 3.00 3.00 1.00 1.00

λmax = 9.761 CI = 0.095 CR = 7%

The weights for each factor were calculated using the eigenvector solution method;
in our case, the largest eigenvalue was 9.761. The corresponding CI was 0.095, which
confirmed the consistency of the model because CI values closer to zero reflect greater
consistency. A further consistency check was conducted based on the CR, which achieved
7% using the RI, which was equal to 1.45 for the case of nine different factors. This was
below the commonly accepted threshold of 10%, indicating that the pairwise comparisons
were reliable and consistent.

Overall, the results obtained using the AHP demonstrated a well-structured, consistent
decision-making process that supported the reliability of the findings. Based on the AHP,
the derived weights were as follows: fire severity had the highest importance in the model,
achieving a weight of 29.4% and showing a dominant role in prioritizing reforestation
actions. This was followed by tree density (22.4%), Corine Land Cover (16.90%), and fire
history (10.10%), highlighting the significant contribution of vegetation structure, land use,
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and fire frequency. The climatic factors precipitation (6.20%) and mean temperature (6.20%)
also played a notable role. Moreover, the topographic features of slope (3.8%), elevation
(2.60%), and aspect (2.60%) had less influence on the model but remained relevant in
guiding the reforestation actions. The higher the weights, the more impact the parameters
had on the post-fire restoration needs based on their relative importance. The normalized
pairwise comparison matrix weights were used to develop a model for prioritizing restora-
tion needs in burned areas. The model presented in Equation 11 was applied to generate a
post-fire restoration prioritization map. The output composite map was categorized into
three classes (low, medium, and high). Low- and medium-priority areas corresponded to
zones with potential for natural recovery, whereas high-priority areas required artificial
restoration interventions. The model was applied to a polygon encompassing 102.96 km2,
covering both the burned and the surrounding regions.

GRESTO = 3.8 × SLOPE + 2.6 × ELEVATION + 2.6 × ASPECT + 29.4 × dNBR + 10.1 × FIRE FREQUENCY
+16.9 × LAND COVER + 6.2 × LST + 6.2 × PRECIPITATION + 22.4 ∗ TREE DENSITY

(10)

Additionally, the map developed based on the GRESTO Index is presented in Figure 3.
The results indicated that 10% of the burned area fell within the low-priority class, followed
by 66% in the moderate-priority class, which represented the majority of the burned area,
while the remaining 24% corresponded to the high-priority regions. Moreover, Table 6
represents the area per class derived from GRESTO Index and the data provided by Depart-
ment of Forests. Obviously, the low-priority class showed a significant overestimation by
the GRESTO Index, while the medium-priority class appeared to be underestimated com-
pared to the Department of Forests’ actions. In contrast, the high-priority class indicated a
strong agreement with the reference data.
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Table 6. Area per priority class derived from GRESTO Index in comparison with Department of
Forests’ actions.

Priority Area (Km2)

DoF GRESTO
Low 0.71 1.64
High 4.10 4.19

Medium 12.49 11.47
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3.2. Sensitivity Analysis

This study conducted a sensitivity analysis to evaluate the robustness and reliability
of the results, since the use of the weights can be subjective. This analysis provided insights
regarding the influence of each weight on the final model. The weight values were adjusted
using the One At A Time (OAT) approach, based on the sequential adjustment of the criteria
weights. Specifically, the nine selected criteria used for developing the GRESTO Index were
adjusted one at a time by ±20% starting from 0 (no adjustment) to ±100%. Based on this
approach, there were a maximum of 99 interchanges in the weights’ adjustments during
the sensitivity analysis. Figure 4 represents the areas corresponding to each priority class
(low, medium, and high) for all scenarios.
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Based on the heatmap for the low-priority class (represented in the green color), which
corresponded to the areas that were not affected by fire or which had low impacts and
did not require immediate interventions, the results showed stability under the different
parameter adjustments, as indicated by the low variability in the estimated areas. In con-
trast, the medium-priority class (shown in orange), where the area was expected to recover
naturally, and the high-priority class (represented in the red color), which corresponded to
severely affected areas requiring urgent restoration actions, demonstrated high sensitivity
to weight adjustments. Specifically, the dNBR, land cover, tree density, and slope signif-
icantly influenced the area distribution, highlighting their importance in the model and
especially in identifying areas suitable for natural restoration and for the identification of
areas that needed artificial restoration actions.

Moreover, to enhance the sensitivity analysis, Cumulative Distribution Functions
(CDFs) were generated for the GRESTO Index’s feasibility scores, showing the index’s
behavior under the different weight adjustments for each parameter. These CDF plots
provide additional insights for the distribution of the index’s feasibility scores, showing
the model’s stability and sensitivity. In detail, the x-axis of the CDF plots represents
the feasibility scores of the GRESTO Index, while the y-axis represents the cumulative
probability (ranging from 0 to 1). Each curve in the model corresponds to a different weight
adjustment applied to the parameters, allowing for a comparative analysis of their impacts.

The visualization of the sensitivity analysis presented in Figure 5 shows that slope, ele-
vation, aspect, LST, fire frequency, and precipitation parameters are less sensitive indicators.
Their CDF curves show close overlaps, indicating that changes in the weights associated
with these indicators have minimal impacts on the prioritization model. In contrast, the
most sensitive indicators are dNBR and land cover, which have high variability, especially
in the more extensive weight adjustments, showing their significant influence on the model
outcomes. Additionally, the tree density displays medium variability in the model, showing
its importance in the model. These findings are essential for the optimization of the weights
for the development of the GRESTO Index in order to ensure that the model remains stable.
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3.3. Validation of the Model

The accuracy assessment based on the confusion matrix that was created confirmed that
the GRESTO model performed well in determining the prioritization of reforestation efforts for
the Solea fire event. As mentioned above, the evaluation was carried out using 1000 stratified
samples proportionally allocated across low-, medium-, and high-priority classes according to
the spatial extent of restoration actions recorded by the Department of Forests.

Based on the confusion matrix created, which is presented in Figure 6, the GRESTO
model achieved an overall accuracy of 80.9%, indicating a reliable level of agreement with
the reference data.

Moreover, for a better evaluation of the GRESTO model’s performance, the precision,
recall, and F1-score were also calculated, and the results are presented in Table 7. For
the low-priority class, the model showed a precision of 0.53, a recall of 0.83, and the
F1-score was 0.65. This indicated a high sensitivity in distinguishing low-priority areas



Remote Sens. 2025, 17, 1269 15 of 23

with moderate reliability. The medium-priority class, which was the most dominant
category in terms of its spatial extent, showed strong classification performance, with a
precision of 0.89, recall of 0.84, and F1-score equal to 0.87, showing the model’s robustness
in accurately identifying this class. In addition, for the high-priority class, the model
achieved a precision of 0.66, but a higher recall of 0.70 and an F1 score of 0.68, suggesting a
relatively balanced performance in identifying high-priority zones.

In addition to the confusion matrix evaluation, an ROC analysis was also performed.
As shown in Figure 7, the AUC values were 0.90 for the low-priority class and 0.79 for both
the medium- and high-priority classes, indicating very good to good separability.
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Table 7. Classification performance metrics for each restoration priority class.

Priority Class Precision Recall F1-Score

Low 0.53 0.83 0.65
Medium 0.89 0.84 0.87

High 0.66 0.70 0.68
Accuracy 0.81

4. Discussion
The restoration of burned forest ecosystems is essential to mitigating the adverse effects

of wildfires on ecological, economic, and social components [117–119]. In fire-prone regions
like the Mediterranean, fire seasons are becoming longer, and wildfires are occurring with
increasing frequency and severity influenced by ecosystem resilience, natural recovery,
and vegetation composition [120]. While restoration is widely acknowledged as a critical
response to post-fire degradation, implementing these efforts across large, burned regions
is often constrained by logistical and resource limitations [23,24]. These factors pose
significant challenges to restoration efforts, underscoring the need for spatial decision
support tools that prioritize restoration areas based on ecological urgency and recovery
potential. This study introduces the GRESTO Index, a spatial decision support tool based
on multi-criteria analysis and remote sensing, to aid in the prioritization of restoration
actions in Mediterranean ecosystems, specifically in Cyprus.

Compared to other decision-making models used in ecological restoration, such as
TOPSIS or VIKOR, AHP in our case offers greater interpretability and flexibility in assigning
weights, making it particularly suitable in cases where expert-based input is needed [21,29].

For the development of the GRESTO Index, ecological indicators such as dNBR, land
cover, tree density, and slope were selected in alignment with criteria widely used in post-
fire assessment [24,32,121,122]. Our findings showed that the most influential factors for
the prioritization of reforestation actions were fire severity, tree density and land cover.
Specifically, the high weight assigned to dNBR (29.4%) underscored the importance of
burn severity as a key driver related to the resilience of plant communities and post-fire
recovery, consistent with previous studies [114,123–126]. For example, ref. [127], through
field studies, has shown that high-severity burn areas present relatively low levels of
natural regeneration, and this is also supported by [128,129]. This was due to the fact that
the organic layers of soil were consumed and there was also a lack of seed sources [130],
reinforcing the need for targeted artificial restoration in these areas [131].

The tree density received a weight of 22.4% and land cover 16.9%; both were identified
as critical factors, reflecting their rolesas indicators of seed bank potential and forest structural
resilience [92]. Specifically, denser pre-fire stands often indicate greater seed availability
and forest structural resilience, which is well supported by the findings from other studies
worldwide [132–136]. Moreover, these findings align with the work of [137,138], who similarly
emphasized vegetation and landscape characteristics as dominant variables in restoration and
wildfire planning models.

Although topographic characteristics and climatic factors had lower weights in the
model, their ecological influence remained critical. For instance, steep slopes posed chal-
lenges for planting and increased the erosion risk, aligning with findings by [28]. Regarding
the climatic factors, precipitation and temperature had significant impacts on the post-fire
regeneration [139]. A recent study on Mediterranean restoration demonstrated that low
annual precipitation significantly reduced seedling survival [140].

Notably, the spatial distribution of priority areas derived from the GRESTO Index
aligned reasonably well with the reforestation actions taken by the Department of Forestry,
demonstrating the model’s utility as a support tool for planning. The model achieved an
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overall accuracy of 80.9% and the reliable recall score for the high-priority class suggested
that the model was effective in identifying areas needing urgent intervention. However, the
lower precision in this category reflected a common challenge in restoration prioritization
where ecological models may recommend interventions that are not always feasible due to
socioeconomic constraints [26].

A key contribution of this study is the sensitivity analysis, which enhanced the in-
terpretability of the model by identifying the most influential parameters. This analysis
showed that dNBR and land cover significantly affected model outputs, while topographic
variables and climatic factors had lower sensitivity. This suggests that future model repeti-
tions could optimize computational resources by focusing on the most impactful variables.

Limitations of the Study and Future Work

Despite its robustness, this study has limitations. The model does not integrate
socioeconomic or logistical parameters, such as proximity to roads, land ownership, or
restoration costs, which can significantly affect the feasibility of reforestation actions. These
exclusions restrict the scope of the model to ecological suitability. Future work should
enhance the model by incorporating these aspects to reflect real-world constraints more
accurately. Additionally, while the model has been validated against a single fire event
in Cyprus, broader validation is essential for scaling the model to national or regional
applications aligned with international restoration frameworks, such as the UN’s Decade
on Ecosystem Restoration and the EU Natura restoration legislation.

5. Conclusions
This study presents the GRESTO Index, a geospatial decision support tool designed to

prioritize post-fire restoration actions in Mediterranean ecosystems, particularly in Cyprus,
using multi-criteria analysis and remote sensing data. The GRESTO model successfully
addressed this objective by integrating ecological and environmental indicators utilizing
AHP through GEE, as a result, offers a practical tool for restoration planning.

The integration of geospatial data for environmental and ecological factors provides a
practical and repeatable framework for supporting reforestation efforts in regions facing
similar fire-related challenges. This integration of remote sensing and cloud-based geospa-
tial analysis not only improves the precision of reforestation efforts but also underscores
the efficiency of cloud computing in sustainable forest management.

Moreover, the study’s findings provide several practical implications, as the GRESTO
model is a cost effective, scalable tool that can support forest authorities in planning post-fire
interventions, improving restoration effectiveness and meeting international environmental
targets (e.g., the European Green Deal, the UN’s Decade on Ecosystem Restoration, and
the Bonn Challenge). Additionally, it offers a flexible structure that can be adapted to local
conditions and data availability.

Future research should focus on the broader validation of the GRESTO model by applying it
to other fire-affected areas to evaluate its robustness in different environmental conditions, which
will help to assess its adaptability and reliability. Moreover, future research will incorporate
time series analysis to assess the post-restoration process, providing valuable insights into the
effectiveness of restoration practices. These insights will be valuable for refining restoration
strategies and improving the long-term resilience of the fire-affected ecosystems.
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